Skip to main content

DD Using Bio-robotics

In order to measure quantitatively the neuro-psychomotor conditions of an individual with a view to subsequently detecting his/her state of health, it is necessary to obtain a set of parameters such as reaction time, speed, strength and tremor. By processing these parameters through the use of fuzzy logic it is possible to monitor an individual's state of health, .i.e. whether he/she is healthy or affected by a particular pathology such as Parkinson's disease, dementia, etc.

The set of parameters obtained is useful not only to diagnose neuro-motor pathologies (e.g. Parkinson Disease), but also to assess general everyday health or to monitor sports performance; moreover, continuous use of the device by an individual for health-monitoring purposes, not only allows for detection of the onset of a particular pathology but also provides greater awareness in terms of how life style or certain habits tend to have repercussions on psycho-physical well-being. Since an individual's state of health should be continually monitored, it is essential that he or she can manage the test autonomously without his/her emotional state being influenced: autonomous testing is important, as the individual is likely to be more relaxed thus obviating emotional problems. The new system has been designed with reference to the biomechanical characteristics of the human finger.

Disease detector (DDX) is a new bio robotic device that is a fuzzy based control system for the detection of neuro-motional and psychophysical health conditions. The initial experimental system (DD1) and the current system (DD2) are not easily portable and, even if they are very reliable, cannot estimate the patient health beyond the typical parameters of Parkinson's disease nor are they able to remotely transmit such diagnoses.

This new bio-robotic system is exploited in order to obtain an intelligent and reliable detector supported by a very small and portable device, with a simple joystick with few buttons, a liquid-display (LCD), and a simple interface for remote communication of diagnosis. It may be adopted for earth and space applications, because of its portability, in order to measure all the reactions in front of external effects.

The DDX control system consists of a small board with an internal fuzzy microcontroller that acquires, through the action on a button on the joystick, some important parameters: reaction time, motion speed, force of the finger on the button, and tremor and analyses them by fuzzy rules in order to detect the patient's disease class. Moreover this new device also includes a system to detect vocal reaction. The resulting output can be visualized through a display or transmitted by a communication interface.

Comments

Popular posts from this blog

Daknet

Now a day it is very easy to establish communication from one part of the world to other. Despite this even now in remote areas villagers travel to talk to family members or to get forms which citizens in-developed countries an call up on a computer in a matter of seconds. The government tries to give telephone connection in very village in the mistaken belief that ordinary telephone is the cheapest way to provide connectivity. But the recent advancements in wireless technology make running a copper wire to an analog telephone much more expensive than the broadband wireless Internet connectivity. Daknet, an ad hoc network uses wireless technology to provide digital connectivity. Daknet takes advantages of the existing transportation and communication infrastructure to provide digital connectivity. Daknet whose name derives from the Hindi word "Dak" for postal combines a physical means of transportation with wireless data transfer to extend the internet connectivity that a upl...

Challenges in the Migration to 4G

Second-generation (2G) mobile systems were very successful in the previous decade. Their success prompted the development of third generation (3G) mobile systems. While 2G systems such as GSM, IS-95, and cdmaOne were designed to carry speech and low-bit-rate data, 3G systems were designed to provide higher-data-rate services. During the evolution from 2G to 3G, a range of wireless systems, including GPRS, IMT-2000, Bluetooth, WLAN, and HiperLAN, have been developed. All these systems were designed independently, targeting different service types, data rates, and users. As all these systems have their own merits and shortcomings, there is no single system that is good enough to replace all the other technologies. Instead of putting efforts into developing new radio interfaces and technologies for 4G systems, which some researchers are doing, we believe establishing 4G systems that integrate existing and newly developed wireless systems is a more feasible option. Researchers are currentl...

Artificial Eye

The retina is a thin layer of neural tissue that lines the back wall inside the eye. Some of these cells act to receive light, while others interpret the information and send messages to the brain through the optic nerve. This is part of the process that enables us to see. In damaged or dysfunctional retina, the photoreceptors stop working, causing blindness. By some estimates, there are more than 10 million people worldwide affected by retinal diseases that lead to loss of vision. The absence of effective therapeutic remedies for retinitis pigmentosa (RP) and age-related macular degeneration (AMD) has motivated the development of experimental strategies to restore some degree of visual function to affected patients. Because the remaining retinal layers are anatomically spared, several approaches have been designed to artificially activate this residual retina and thereby the visual system. At present, two general strategies have been pursued. The "Epiretinal" approach involv...