Skip to main content

DD Using Bio-robotics

In order to measure quantitatively the neuro-psychomotor conditions of an individual with a view to subsequently detecting his/her state of health, it is necessary to obtain a set of parameters such as reaction time, speed, strength and tremor. By processing these parameters through the use of fuzzy logic it is possible to monitor an individual's state of health, .i.e. whether he/she is healthy or affected by a particular pathology such as Parkinson's disease, dementia, etc.

The set of parameters obtained is useful not only to diagnose neuro-motor pathologies (e.g. Parkinson Disease), but also to assess general everyday health or to monitor sports performance; moreover, continuous use of the device by an individual for health-monitoring purposes, not only allows for detection of the onset of a particular pathology but also provides greater awareness in terms of how life style or certain habits tend to have repercussions on psycho-physical well-being. Since an individual's state of health should be continually monitored, it is essential that he or she can manage the test autonomously without his/her emotional state being influenced: autonomous testing is important, as the individual is likely to be more relaxed thus obviating emotional problems. The new system has been designed with reference to the biomechanical characteristics of the human finger.

Disease detector (DDX) is a new bio robotic device that is a fuzzy based control system for the detection of neuro-motional and psychophysical health conditions. The initial experimental system (DD1) and the current system (DD2) are not easily portable and, even if they are very reliable, cannot estimate the patient health beyond the typical parameters of Parkinson's disease nor are they able to remotely transmit such diagnoses.

This new bio-robotic system is exploited in order to obtain an intelligent and reliable detector supported by a very small and portable device, with a simple joystick with few buttons, a liquid-display (LCD), and a simple interface for remote communication of diagnosis. It may be adopted for earth and space applications, because of its portability, in order to measure all the reactions in front of external effects.

The DDX control system consists of a small board with an internal fuzzy microcontroller that acquires, through the action on a button on the joystick, some important parameters: reaction time, motion speed, force of the finger on the button, and tremor and analyses them by fuzzy rules in order to detect the patient's disease class. Moreover this new device also includes a system to detect vocal reaction. The resulting output can be visualized through a display or transmitted by a communication interface.

Comments

Popular posts from this blog

Daknet

Now a day it is very easy to establish communication from one part of the world to other. Despite this even now in remote areas villagers travel to talk to family members or to get forms which citizens in-developed countries an call up on a computer in a matter of seconds. The government tries to give telephone connection in very village in the mistaken belief that ordinary telephone is the cheapest way to provide connectivity. But the recent advancements in wireless technology make running a copper wire to an analog telephone much more expensive than the broadband wireless Internet connectivity. Daknet, an ad hoc network uses wireless technology to provide digital connectivity. Daknet takes advantages of the existing transportation and communication infrastructure to provide digital connectivity. Daknet whose name derives from the Hindi word "Dak" for postal combines a physical means of transportation with wireless data transfer to extend the internet connectivity that a upl...

Wireless LAN Security

Wireless local area networks (WLANs) based on the Wi-Fi (wireless fidelity) standards are one of today's fastest growing technologies in businesses, schools, and homes, for good reasons. They provide mobile access to the Internet and to enterprise networks so users can remain connected away from their desks. These networks can be up and running quickly when there is no available wired Ethernet infrastructure. They can be made to work with a minimum of effort without relying on specialized corporate installers. Some of the business advantages of WLANs include: " Mobile workers can be continuously connected to their crucial applications and data; " New applications based on continuous mobile connectivity can be deployed; " Intermittently mobile workers can be more productive if they have continuous access to email, instant messaging, and other applications; " Impromptu interconnections among arbitrary numbers of participants become possible. " But having prov...

Face Recognition Technology

Humans are very good at recognizing faces and if computers complex patterns. Even a passage of time doesn't affect this capability and therefore it would help become as robust as humans in face recognition. Machine recognition of human faces from still or video images has attracted a great deal of attention in the psychology, image processing, pattern recognition, neural science, computer security, and computer vision communities. Face recognition is probably one of the most non-intrusive and user-friendly biometric authentication methods currently available; a screensaver equipped with face recognition technology can automatically unlock the screen whenever the authorized user approaches the computer. Face is an important part of who we are and how people identify us. It is arguably a person's most unique physical characteristic. While humans have had the innate ability to recognize and distinguish different faces for millions of years, computers are just now catching up. Visi...