Skip to main content

Artificial Eye

The retina is a thin layer of neural tissue that lines the back wall inside the eye. Some of these cells act to receive light, while others interpret the information and send messages to the brain through the optic nerve. This is part of the process that enables us to see. In damaged or dysfunctional retina, the photoreceptors stop working, causing blindness. By some estimates, there are more than 10 million people worldwide affected by retinal diseases that lead to loss of vision.

The absence of effective therapeutic remedies for retinitis pigmentosa (RP) and age-related macular degeneration (AMD) has motivated the development of experimental strategies to restore some degree of visual function to affected patients. Because the remaining retinal layers are anatomically spared, several approaches have been designed to artificially activate this residual retina and thereby the visual system.

At present, two general strategies have been pursued. The "Epiretinal" approach involves a semiconductor-based device placed above the retina, close to or in contact with the nerve fiber layer retinal ganglion cells. The information in this approach must be captured by a camera system before transmitting data and energy to the implant. The "Sub retinal" approach involves the electrical stimulation of the inner retina from the sub retinal space by implantation of a semiconductor-based micro photodiode array (MPA) into this location. The concept of the sub retinal approach is that electrical charge generated by the MPA in response to a light stimulus may be used to artificially alter the membrane potential of neurons in the remaining retinal layers in a manner to produce formed images.
Some researchers have developed an implant system where a video camera captures images, a chip processes the images, and an electrode array transmits the images to the brain. It's called Cortical Implants.



The Visual System
The human visual system is remarkable instrument. It features two mobile acquisition units each has formidable preprocessing circuitry placed at a remote location from the central processing system (brain). Its primary task include transmitting images with a viewing angle of at least 140deg and resolution of 1 arc min over a limited capacity carrier, the million or so fibers in each optic nerve through these fibers the signals are passed to the so called higher visual cortex of the brain

The nerve system can achieve this type of high volume data transfer by confining such capability to just part of the retina surface, whereas the center of the retina has a 1:1 ration between the photoreceptors and the transmitting elements, the far periphery has a ratio of 300:1. This results in gradual shift in resolution and other system parameters.
At the brain's highest level the visual cortex an impressive array of feature extraction mechanisms can rapidly adjust the eye's position to sudden movements in the peripherals filed of objects too small to se when stationary. The visual system can resolve spatial depth differences by combining signals from both eyes with a precision less than one tenth the size of a single photoreceptor.

Comments

Popular posts from this blog

Wireless LAN Security

Wireless local area networks (WLANs) based on the Wi-Fi (wireless fidelity) standards are one of today's fastest growing technologies in businesses, schools, and homes, for good reasons. They provide mobile access to the Internet and to enterprise networks so users can remain connected away from their desks. These networks can be up and running quickly when there is no available wired Ethernet infrastructure. They can be made to work with a minimum of effort without relying on specialized corporate installers. Some of the business advantages of WLANs include: " Mobile workers can be continuously connected to their crucial applications and data; " New applications based on continuous mobile connectivity can be deployed; " Intermittently mobile workers can be more productive if they have continuous access to email, instant messaging, and other applications; " Impromptu interconnections among arbitrary numbers of participants become possible. " But having prov

Millipede

Today data storage is dominated by the use of magnetic disks. Storage densities of about more than 5 Gb/cm 2 have been achieved. In the past 40 years areal density has increased by 6 orders of magnitude. But there is a physical limit. It has been predicted that superparamagnetic effects- the bit size at which stored information become volatile as a function of time- will limit the densities of current longitudinal recording media to about 15.5 Gb/cm2 . In the near future century nanometer scale will presumably pervade the field of data storage. In magnetic storage used today, there is no clear-cut way to achieve the nanometer scale in all three dimensions. So new techniques like holographic memory and probe based data storage are emerging. If an emerging technology is to be considered as a serious candidate to replace an existing technology, it should offer long-term perspectives. Any new technology with better areal density than today's magnetic storage should have long-term poten