Skip to main content

Daknet

Now a day it is very easy to establish communication from one part of the world to other. Despite this even now in remote areas villagers travel to talk to family members or to get forms which citizens in-developed countries an call up on a computer in a matter of seconds. The government tries to give telephone connection in very village in the mistaken belief that ordinary telephone is the cheapest way to provide connectivity. But the recent advancements in wireless technology make running a copper wire to an analog telephone much more expensive than the broadband wireless Internet connectivity. Daknet, an ad hoc network uses wireless technology to provide digital connectivity. Daknet takes advantages of the existing transportation and communication infrastructure to provide digital connectivity. Daknet whose name derives from the Hindi word "Dak" for postal combines a physical means of transportation with wireless data transfer to extend the internet connectivity that a uplink, a cyber café or post office provides.

Real time communications need large capital investment and hence high level of user adoption to receiver costs. The average villager cannot even afford a personnel communications device such as a telephone or computer. To recover cost, users must share the communication infrastructure. Real time aspect of telephony can also be a disadvantage. Studies show that the current market for successful rural Information and Communication Technology (ICT) services does not appear to rely on real-time connectivity, but rather on affordability and basic interactivity. The poor not only need digital services, but they are willing and able to pay for them to offset the much higher costs of poor transportation, unfair pricing, and corruption. It is useful to consider non real-time infrastructures and applications such as voice mail, e-mail, and electronic bulletin boards. Technologies like store- and forward or asynchronous modes of communication can be significantly lower in cost and do not necessarily sacrifice the functionality required to deliver valuable user services. In addition to non real-time applications such as e-mail and voice messaging , providers can use asynchronous modes of communication to create local information repositories that community members can add to and query.

Wireless Catalyst
Advances in the IEEE 802 standards have led to huge commercial success and low pricing for broadband networks. These techniques can provide broadband access to even the most remote areas at low price. Important considerations in a WLAN are

Security: In a WLAN, access is not limited to the wired PCs but it is also open to all the wireless network devices, making it for a hacker to easily breach the security of that network.

Reach: WLAN should have optimum coverage and performance for mobile users to seamlessly roam in the wireless network

Interference: Minimize the interference and obstruction by designing the wireless network with proper placement of wireless devices.

Interoperability: Choose a wireless technology standard that would make the WLAN a truly interoperable network with devices from different vendors integrated into the same.

Reliability: WLAN should provide reliable network connection in the enterprise network.

Manageability: A manageable WLAN allows network administrators to manage, make changes and troubleshoot problems with fewer hassles. Wireless data networks based on the IEEE 802.11 or wifi standard are perhaps the most promising of the wireless technologies. Features of wifi include ease of setup, use and maintenance, relatively high bandwidth; and relatively low cost for both users and providers.

Daknet combines physical means of transportation with wireless data transfer to extend the internet connectivity. In this innovative vehicle mounted access points using 802.11b based technology to provide broadband, asynchronous, store and forward connectivity in rural areas.

Comments

Popular posts from this blog

Micro Electronic Pill

The invention of transistor enabled the first use of radiometry capsules, which used simple circuits for the internal study of the gastro-intestinal (GI) [1] tract. They couldn't be used as they could transmit only from a single channel and also due to the size of the components. They also suffered from poor reliability, low sensitivity and short lifetimes of the devices. This led to the application of single-channel telemetry capsules for the detection of disease and abnormalities in the GI tract where restricted area prevented the use of traditional endoscopy. They were later modified as they had the disadvantage of using laboratory type sensors such as the glass pH electrodes, resistance thermometers, etc. They were also of very large size. The later modification is similar to the above instrument but is smaller in size due to the application of existing semiconductor fabrication technologies. These technologies led to the formation of "MICROELECTRONIC PILL". Microelec

Millipede

Today data storage is dominated by the use of magnetic disks. Storage densities of about more than 5 Gb/cm 2 have been achieved. In the past 40 years areal density has increased by 6 orders of magnitude. But there is a physical limit. It has been predicted that superparamagnetic effects- the bit size at which stored information become volatile as a function of time- will limit the densities of current longitudinal recording media to about 15.5 Gb/cm2 . In the near future century nanometer scale will presumably pervade the field of data storage. In magnetic storage used today, there is no clear-cut way to achieve the nanometer scale in all three dimensions. So new techniques like holographic memory and probe based data storage are emerging. If an emerging technology is to be considered as a serious candidate to replace an existing technology, it should offer long-term perspectives. Any new technology with better areal density than today's magnetic storage should have long-term poten

Solar Power Satellites

The new millennium has introduced increased pressure for finding new renewable energy sources. The exponential increase in population has led to the global crisis such as global warming, environmental pollution and change and rapid decrease of fossil reservoirs. Also the demand of electric power increases at a much higher pace than other energy demands as the world is industrialized and computerized. Under these circumstances, research has been carried out to look into the possibility of building a power station in space to transmit electricity to Earth by way of radio waves-the Solar Power Satellites. Solar Power Satellites(SPS) converts solar energy in to micro waves and sends that microwaves in to a beam to a receiving antenna on the Earth for conversion to ordinary electricity. SPS is a clean, large-scale, stable electric power source. Solar Power Satellites is known by a variety of other names such as Satellite Power System, Space Power Station, Space Power System, Solar Power Sta