Skip to main content

Artificial Eye

The retina is a thin layer of neural tissue that lines the back wall inside the eye. Some of these cells act to receive light, while others interpret the information and send messages to the brain through the optic nerve. This is part of the process that enables us to see. In damaged or dysfunctional retina, the photoreceptors stop working, causing blindness. By some estimates, there are more than 10 million people worldwide affected by retinal diseases that lead to loss of vision.

The absence of effective therapeutic remedies for retinitis pigmentosa (RP) and age-related macular degeneration (AMD) has motivated the development of experimental strategies to restore some degree of visual function to affected patients. Because the remaining retinal layers are anatomically spared, several approaches have been designed to artificially activate this residual retina and thereby the visual system.

At present, two general strategies have been pursued. The "Epiretinal" approach involves a semiconductor-based device placed above the retina, close to or in contact with the nerve fiber layer retinal ganglion cells. The information in this approach must be captured by a camera system before transmitting data and energy to the implant. The "Sub retinal" approach involves the electrical stimulation of the inner retina from the sub retinal space by implantation of a semiconductor-based micro photodiode array (MPA) into this location. The concept of the sub retinal approach is that electrical charge generated by the MPA in response to a light stimulus may be used to artificially alter the membrane potential of neurons in the remaining retinal layers in a manner to produce formed images.
Some researchers have developed an implant system where a video camera captures images, a chip processes the images, and an electrode array transmits the images to the brain. It's called Cortical Implants.



The Visual System
The human visual system is remarkable instrument. It features two mobile acquisition units each has formidable preprocessing circuitry placed at a remote location from the central processing system (brain). Its primary task include transmitting images with a viewing angle of at least 140deg and resolution of 1 arc min over a limited capacity carrier, the million or so fibers in each optic nerve through these fibers the signals are passed to the so called higher visual cortex of the brain

The nerve system can achieve this type of high volume data transfer by confining such capability to just part of the retina surface, whereas the center of the retina has a 1:1 ration between the photoreceptors and the transmitting elements, the far periphery has a ratio of 300:1. This results in gradual shift in resolution and other system parameters.
At the brain's highest level the visual cortex an impressive array of feature extraction mechanisms can rapidly adjust the eye's position to sudden movements in the peripherals filed of objects too small to se when stationary. The visual system can resolve spatial depth differences by combining signals from both eyes with a precision less than one tenth the size of a single photoreceptor.

Comments

Popular posts from this blog

Daknet

Now a day it is very easy to establish communication from one part of the world to other. Despite this even now in remote areas villagers travel to talk to family members or to get forms which citizens in-developed countries an call up on a computer in a matter of seconds. The government tries to give telephone connection in very village in the mistaken belief that ordinary telephone is the cheapest way to provide connectivity. But the recent advancements in wireless technology make running a copper wire to an analog telephone much more expensive than the broadband wireless Internet connectivity. Daknet, an ad hoc network uses wireless technology to provide digital connectivity. Daknet takes advantages of the existing transportation and communication infrastructure to provide digital connectivity. Daknet whose name derives from the Hindi word "Dak" for postal combines a physical means of transportation with wireless data transfer to extend the internet connectivity that a upl...

MOBILE IPv6

Mobile IP is the IETF proposed standard solution for handling terminal mobility among IP subnets and was designed to allow a host to change its point of attachment transparently to an IP network. Mobile IP works at the network layer, influencing the routing of datagrams, and can easily handle mobility among different media (LAN, WLAN, dial-up links, wireless channels, etc.). Mobile IPv6 is a protocol being developed by the Mobile IP Working Group (abbreviated as MIP WG) of the IETF (Internet Engineering Task Force). The intention of Mobile IPv6 is to provide a functionality for handling the terminal, or node, mobility between IPv6 subnets. Thus, the protocol was designed to allow a node to change its point of attachment to the IP network such a way that the change does not affect the addressability and reachability of the node. Mobile IP was originally defined for IPv4, before IPv6 existed. MIPv6 is currently becoming a standard due to inherent advantages of IPv6 over IPv4 and will the...