Skip to main content

Micro Electronic Pill

The invention of transistor enabled the first use of radiometry capsules, which used simple circuits for the internal study of the gastro-intestinal (GI) [1] tract. They couldn't be used as they could transmit only from a single channel and also due to the size of the components. They also suffered from poor reliability, low sensitivity and short lifetimes of the devices. This led to the application of single-channel telemetry capsules for the detection of disease and abnormalities in the GI tract where restricted area prevented the use of traditional endoscopy.

They were later modified as they had the disadvantage of using laboratory type sensors such as the glass pH electrodes, resistance thermometers, etc. They were also of very large size. The later modification is similar to the above instrument but is smaller in size due to the application of existing semiconductor fabrication technologies. These technologies led to the formation of "MICROELECTRONIC PILL".

Microelectronic pill is basically a multichannel sensor used for remote biomedical measurements using micro technology. This is used for the real-time measurement parameters such as temperature, pH, conductivity and dissolved oxygen. The sensors are fabricated using electron beam and photolithographic pattern integration and were controlled by an application specific integrated circuit (ASIC).


BLOCK DIAGRAM

Microelectronic pill consists of 4 sensors (2) which are mounted on two silicon chips (Chip 1 & 2), a control chip (5), a radio transmitter (STD- type 1-7, type2-crystal type-10) & silver oxide batteries (8).
1-access channel, 3-capsule, 4- rubber ring, 6-PCB chip carrier

BASIC COMPONENTS

A. Sensors

There are basically 4 sensors mounted on two chips- Chip 1 & chip 2. On chip 1(shown in fig 2 a), c), e)), temperature sensor silicon diode (4), pH ISFET sensor (1) and dual electrode conductivity sensor (3) are fabricated. Chip 2 comprises of three electrode electrochemical cell oxygen sensor (2) and optional NiCr resistance thermometer.

1) Sensor chip 1:

An array consisting of both temperature sensor & pH sensor platforms were cut from the wafer & attached onto 100-µm- thick glass cover slip cured on a hot plate. The plate acts as a temporary carrier to assist handling of the device during level 1 of lithography when the electric connections tracks, electrodes bonding pads are defined. Bonding pads provide electrical contact to the external electronic circuit.

Comments

Popular posts from this blog

Daknet

Now a day it is very easy to establish communication from one part of the world to other. Despite this even now in remote areas villagers travel to talk to family members or to get forms which citizens in-developed countries an call up on a computer in a matter of seconds. The government tries to give telephone connection in very village in the mistaken belief that ordinary telephone is the cheapest way to provide connectivity. But the recent advancements in wireless technology make running a copper wire to an analog telephone much more expensive than the broadband wireless Internet connectivity. Daknet, an ad hoc network uses wireless technology to provide digital connectivity. Daknet takes advantages of the existing transportation and communication infrastructure to provide digital connectivity. Daknet whose name derives from the Hindi word "Dak" for postal combines a physical means of transportation with wireless data transfer to extend the internet connectivity that a upl...

Challenges in the Migration to 4G

Second-generation (2G) mobile systems were very successful in the previous decade. Their success prompted the development of third generation (3G) mobile systems. While 2G systems such as GSM, IS-95, and cdmaOne were designed to carry speech and low-bit-rate data, 3G systems were designed to provide higher-data-rate services. During the evolution from 2G to 3G, a range of wireless systems, including GPRS, IMT-2000, Bluetooth, WLAN, and HiperLAN, have been developed. All these systems were designed independently, targeting different service types, data rates, and users. As all these systems have their own merits and shortcomings, there is no single system that is good enough to replace all the other technologies. Instead of putting efforts into developing new radio interfaces and technologies for 4G systems, which some researchers are doing, we believe establishing 4G systems that integrate existing and newly developed wireless systems is a more feasible option. Researchers are currentl...

Face Recognition Technology

Humans are very good at recognizing faces and if computers complex patterns. Even a passage of time doesn't affect this capability and therefore it would help become as robust as humans in face recognition. Machine recognition of human faces from still or video images has attracted a great deal of attention in the psychology, image processing, pattern recognition, neural science, computer security, and computer vision communities. Face recognition is probably one of the most non-intrusive and user-friendly biometric authentication methods currently available; a screensaver equipped with face recognition technology can automatically unlock the screen whenever the authorized user approaches the computer. Face is an important part of who we are and how people identify us. It is arguably a person's most unique physical characteristic. While humans have had the innate ability to recognize and distinguish different faces for millions of years, computers are just now catching up. Visi...